Weakly Injective BCK-Modules

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On weakly projective and weakly injective modules

The purpose of this paper is to further the study of weakly injective and weakly projective modules as a generalization of injective and projective modules. For a locally q.f.d. module M , there exists a module K ∈ σ[M ] such that K ⊕N is weakly injective in σ[M ], for any N ∈ σ[M ]. Similarly, if M is projective and right perfect in σ[M ], then there exists a module K ∈ σ[M ] such that K ⊕ N i...

متن کامل

Generalizations of principally quasi-injective modules and quasiprincipally injective modules

LetR be a ring andM a rightR-module with S= End(MR). The moduleM is called almost principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an S-submodule Xm of M such that lMrR(m) = Sm ⊕ Xm. The module M is called almost quasiprincipally injective (or AQP-injective for short) if, for any s∈ S, there exists a left ideal Xs of S such that lS(ker(s)) = Ss ⊕ Xs. In thi...

متن کامل

Injective Modules and Fp-injective Modules over Valuation Rings

It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....

متن کامل

On Max-injective modules

$R$-module. In this paper, we explore more properties of $Max$-injective modules and we study some conditions under which the maximal spectrum of $M$ is a $Max$-spectral space for its Zariski topology.

متن کامل

Injective Classes of Modules

We study classes of modules over a commutative ring which allow to do homological algebra relative to such a class. We classify those classes consisting of injective modules by certain subsets of ideals. When the ring is Noetherian the subsets are precisely the generization closed subsets of the spectrum of the ring.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISRN Algebra

سال: 2011

ISSN: 2090-6285,2090-6293

DOI: 10.5402/2011/142403